

Logic Symbol

Functional Description

The ABT16543 contains two sets of D-type latches, with separate input and output controls for each. For data flow from A to B, for example, the A to B Enable ($\overline{\mathrm{CEAB}}$) input must be low in order to enter data from the A port or take data from the B-Port as indicated in the Data I/O Control Table. With $\overline{\mathrm{CEAB}}$ low, a low signal on ($\overline{\mathrm{LEAB}}$) input makes the A to B latches transparent; a subsequent low to high transition of the $\overline{\mathrm{LEAB}}$ line puts the A latches in the storage

Logic Diagrams

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays

Data I/O Control Table

Inputs			Latch Status (Byte n)	Output Buffers (Byte n)
$\overline{C E A B}_{n}$	EAB	EAB		
H	X	X	Latched	HIGH Z
X	H	X	Latched	-
L	L	X	Transparent	-
X	X	H	-	HIGH Z
L	X	L	-	Driving

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
A-to-B data flow shown,
B-to-A flow control is the same, except using $\overline{\operatorname{CEBA}}_{n}, \overline{\mathrm{LEBA}}_{n}$ and $\overline{\mathrm{OEBA}}_{n}$
mode and their outputs no longer change with the A inputs. With $\overline{C E A B}$ and $\overline{O E A B}$ both low, the B output buffers are active and reflect the data present on the output of the A latches. Control of data flow from B to A is similar, but using the $\overline{C E B A}, \overline{L E B A}$ and $\overline{O E B A}$. Each byte has separate control inputs, allowing the device to be used as two 8 -bit transceivers or as one 16-bit transceiver.

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings（Note 1）

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
V_{CC} Pin Potential to
Ground Pin
Input Voltage（Note 2）
Input Current（Note 2）
Voltage Applied to Any Output in the Disable or
Power－Off State
in the HIGH State
Current Applied to Output in LOW State（Max）
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA
-0.5 V to +5.5 V
-0.5 V to V_{CC}
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
DC Latchup Source Current $\quad-500 \mathrm{~mA}$ Over Voltage Latchup（I／O）10V

Recommended Operating Conditions

Free Air Ambient Temperature $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage $\quad+4.5 \mathrm{~V}$ to +5.5 V

Minimum Input Edge Rate（ $\Delta \mathrm{V} / \Delta \mathrm{t}$ ）

Data Input	$50 \mathrm{mV} / \mathrm{ns}$
Enable Input	$20 \mathrm{mV} / \mathrm{ns}$
Clock Input	$100 \mathrm{mV} / \mathrm{ns}$

Note 1：Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired．Functional operation under these conditions is not implied．
Note 2：Either voltage limit or current limit is sufficient to protect inputs．

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	v_{cc}	Conditions
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal
V_{CD}	Input Clamp Diode Voltage			－1．2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$（Non I／O Pins）
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$					$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA},\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA},\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.55	V	Min	$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA},\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}, \text { (Non-l/O Pins) }$ All Other Pins Grounded
$\overline{I_{H}}$	Input HIGH Current			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\text { (Non-I/O Pins) }((\text { Note } 3) \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}(\text { Non-I/O Pins }) \end{aligned}$
$\mathrm{l}_{\text {BVI }}$	Input HIGH Current Breakdown Test			7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$（Non－I／O Pins）
$\mathrm{l}_{\text {BVIT }}$	Input HIGH Current Breakdown Test（I／O）			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
ILL	Input LOW Current			$\begin{aligned} & \hline-1 \\ & -1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\text { Non-I/O Pins) (Note 3) } \\ & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \text { (Non-//O Pins) } \end{aligned}$
$\mathrm{I}_{\mathrm{IH}}+\mathrm{I}_{\text {OZH }}$	Output Leakage Current			10	$\mu \mathrm{A}$	0V－5．5V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) ; \\ & \overline{\text { OEAB } \text { or } \overline{\mathrm{CEAB}}=2 \mathrm{~V}} \end{aligned}$
$\overline{I_{\text {IL }}+I_{\text {OZL }}}$	Output Leakage Current			－10	$\mu \mathrm{A}$	0V－5．5V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \\ & \overline{\mathrm{OEAB}} \text { or } \overline{\mathrm{CEAB}}=2 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {OS }}$	Output Short－Circuit Current	－100		－275	mA	Max	$\mathrm{V}_{\text {OUT }}=0 V\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {cex }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
Izz	Bus Drainage Test			100	$\mu \mathrm{A}$	0．0V	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$ ；All Others GND
${ }^{\text {CCH }}$	Power Supply Current			1.0	mA	Max	All Outputs HIGH
${ }^{\text {CCL }}$	Power Supply Current			60	mA	Max	All Outputs LOW
$\mathrm{I}_{\text {ccz }}$	Power Supply Current			1.0	mA	Max	Outputs 3－STATE All Others at V_{CC} or GND
${ }^{\text {CCT }}$	Additional $\mathrm{ICC}^{\text {／lnput }}$			2.5	mA	Max	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$ All Others at V_{CC} or GND
${ }^{\text {CCD }}$	Dynamic ICC No Load （Note 3）			0.25	mA／MHz	Max	Outputs Open，$\overline{C E A B}, \overline{O E A B}, \overline{L E A B}=G N D$, $\overline{C E B A}=V_{C C}$ ，One Bit Toggling， 50\％Duty Cycle
Note 3：Guaranteed but not tested．							

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{array}{r} \mathrm{T}_{\mathrm{A}}=- \\ \mathrm{V}_{\mathrm{CC}} \end{array}$	$\begin{aligned} & +85^{\circ} \mathrm{C} \\ & 5.5 \mathrm{~V} \end{aligned}$	Units
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay A_{n} to B_{n} or B_{n} to A_{n}	1.5	3.0	5.7	1.5	5.7	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & \overline{\operatorname{LEAB}}_{\bar{n}} \text { to } B_{n}, \overline{\operatorname{LEBA}}_{\bar{n}} \text { to } A_{n} \end{aligned}$	1.5	3.0	5.5	1.5	5.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	$\begin{aligned} & \text { Enable Time } \\ & \overline{\mathrm{OEBA}}_{\mathrm{n}} \text { or } \overline{\mathrm{OEAB}}_{\bar{n}} \text { to } \mathrm{A}_{n} \text { or } \mathrm{B}_{n} \end{aligned}$	1.5	2.8	5.2	1.5	5.2	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	$\begin{aligned} & \text { Disable Time } \\ & \overline{\mathrm{OEAB}}_{n} \text { or } \overline{\mathrm{OEBA}}_{n} \text { to } A_{n} \text { or } B_{n} \end{aligned}$	1.6	3.1	6.0	1.6	6.0	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Enable Time $\overline{\mathrm{CEBA}}_{n}$ or $\overline{\mathrm{CEAB}}_{n}$ to A_{n} or B_{n}	1.5	3.1	6.2	1.5	6.2	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Disable Time $\overline{\mathrm{CEBA}}_{n}$ or $\overline{\mathrm{CEAB}}_{\mathrm{n}}$ to A_{n} or B_{n}	1.7	3.2	6.3	1.7	6.3	ns

AC Operating Requirements

(SSOP Package)						
Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW A_{n} or B_{n} to $\overline{L E B A}_{n}$ or $\overline{L E A B}_{\bar{n}}^{-}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW A_{n} or B_{n} to ${\overline{\operatorname{LEBA}_{n}}}_{\bar{n}}$ or $\overline{\operatorname{LEAB}}_{\bar{n}}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
$\mathrm{t}_{\mathrm{W}}(\mathrm{L})$	Pulse Width, LOW	3.0		3.0		ns

Capacitance

Symbol	Parameter	Typ	Units	Conditions $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	5.0	pF	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}(\mathrm{non} \mathrm{I/O} \mathrm{pins})$
$\mathrm{C}_{\text {I/O }}($ Note 4)	Output Capacitance	11.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$

Note 4: $\mathrm{C}_{\mathrm{I} / \mathrm{O}}$ is measured at frequency, $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012.

AC Loading

*Includes jig and probe capacitanceren
*Includes jig and probe capacitance
FIGURE 1. Standard AC Test Load

AC Waveforms

FIGURE 4. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

FIGURE 5. Propagation Delay, Pulse Width Waveforms

FIGURE 6. 3-STATE Output HIGH and LOW Enable and Disable Times

Physical Dimensions inches (millimeters) unless otherwise noted

56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
Package Number MS56A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

0.09-0.20 TYF | ϕ | $0.13(\mathrm{M})$ | A | $\mathrm{B}(\mathrm{S}) \mathrm{C}(\mathrm{S})$ |
| :--- | :--- | :--- | :--- |

DETAIL A
TYPICAL
56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
